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Stokes flow past bubbles and drops partially coated with 
thin films. 

Part 1. Stagnant cap of surfactant film - exact solution 
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In this investigation the creeping flow due to the motion of a liquid drop or a bubble 
in another immiscible fluid is examined when the interface is partially covered by 
a stagnant layer of surfactant. The associated boundary-value problem involves 
mixed boundary conditions at the interface, which lead to a set of dual series 
equations. An inversion of these equations yields the exact solution to the stagnant 
cap problem. 

Several useful results are obtained in dosed form. Among these are the expressions 
for the drag force, the difference between the maximum and the minimum interfacial 
tensions, and the amount of adsorbed surfactant. A shifting of the centre of the 
internal vortex is observed. 

1. Introduction 
The motion of liquid drops and gas bubbles has aroused a lot of interest for many 

years. The earliest investigations of the motion of a liquid drop in another immiscible 
liquid were carried out by Rybczynski (191 1 )  and independetly by Hadamard (1911). 
The question about the effect of a third component as an impurity has been addressed 
by numerous investigators. The principal role of the impurity is in the form of a 
surfactant, which retards the motion by setting up a surface-tension gradient. 

Experimental observations by Savic (1953}, Garner & Skelland (1955), Elzinga & 
Banchero (1961), Griffith (1962), Horton, Fritsch & Kintner (1965), Huang & 
Kintner (1969) and Beitel & Heideger (1971) have all shown that the surfactant often 
collects in the form of a stagnant cap a t  the rear of the drop or the bubble, as shown 
in figure 1. The velocity on each side of the cap has been experimentally observed 
to vanish. This is frequently the case except for highly soluble surfactants (low PBclet 
number), for which there is a non-zero velocity over the entire interface. Such flows 
have been modelled by Levich (1962), Schechter & Farley (1963), Newman (1967), 
Wasserman & Slattery (1969), Harper (1972, 1982), Saville (1973), Lucassen & Giles 
(1975), and Levan & Newman (1976). An application of surface shear and surface 
dilatational viscosities was recently carried out for drops and bubbles by Levan 
(1981). 

The case of creeping flow past a bubble with a stagnant cap has been investigated 
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Mobile interface 

t i g =  fie= 0 

FIQIJRE 1 .  A schematic of the physical phenomenon being modelled. The spherical cap having a 
no-slip condition is denoted by a heavy line. 

by Savic (1953), Davis & Acrivos (1966) and Harper (1973, 1982). In  each case the 
difficulty came about in dealing with the mixed boundary conditions due to  the 
stagnant cap. The formulation led to an infinite set of algebraic equations for the 
coefficients of a series solution. Savic (1953) truncated the series a t  six terms, while 
Davis & Acrivos (1966) used 150 terms. Harper (1973, 1982) studied the case of small 
cap angles and carried out an asymptotic analysis using oblate spheroidal 
coordinates. 

I n  the present study the problem is generalized to include both drops and bubbles 
by allowing internal circulation within the drop. We first examine the limits of low 
Reynolds number and high P6clet number and formally establish the interface 
conditions appropriate to  a stagnant cap. An exact solution is found for the resulting 
problem for an arbitrary cap angle. Further, a closed-form expression is found for 
the drag force in terms of viscosities and the cap angle. Also obtained are the 
closed-form expressions for the difference between the maximum and the minimum 
interfacial tensions, and the amount of surfactant present on the interface. Both are 
found as functions of the cap angle. 

I n  addition to being a contribution in the study of surfactants, the present solution 
is a fundamental building block in the study of another class of flows. These flows 
will be treated in Part 2, which will consist of an examination of the cases in which 
the thin film is a liquid continuum with a weak internal circulation. A great deal of 
interest has been expressed in the study of these flows. Recent laboratory investig- 
ations by Mori (1978) have shown some of the characteristics of such flows. Among 
the specific areas of application are direct-contact heat exchangers (Sideman & Taitel 
1964) and artificial blood oxygenation (Li & Asher 1973). 
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2. Governing equations 
I n  this section the governing differential equations are examined in non-dimensional 

form, and approximations are made in the limits of low Reynolds number and high 
PBclet number. The resulting mathematical description of a stagnant cap is formally 
derived for these limits. 

For the motion of a drop in an unbounded fluid we employ a fixed coordinate 
system. The centre of the drop is taken to be the origin. The interface is defined by 
r = R and we assume that the shape of the drop is spherical. This assumption requires 
the surface tension force perpendicular to  the interface to be large compared with 
the corresponding viscous force. 

The governing equations are given below in non-dimensional form. The physical 
parameters pertaining to the interior of the drop (0 < r < R )  are distinguished from 
those pertaining to the exterior bulk fluid ( R  < r < CO) by a 'hat  '. The surface phase 
is denoted by a subscript s. 

Continuity : v.u = 0, (1) 

V . Q  = 0. (2) 

Momentum : Reu.Vu  = -Vp+V2u, 

R^eQ.vfi = -v$+v~Q. 
Surfactant transport (bulk phases) : 

(3) 

(4) 

1 
Pe 

1 

W 

v .  (cu) = - VZC, 

v . ( to) = A v2e. 

( 5 )  

(6) 

Surfactant transport (surface phase) : 

Surface kinetics of adsorption : 

The dimensionless groups are defined as Re = UR/v,  $e = UR/fl, Pe = UR/D, 
Pe = UR/B,  Pe,* = UR/D,,  Pe, = Urmax/Dc,, and Pe, = Urmax/Bc,. Here U is 
the velocity of the uniform stream, uU is the fluid velocity field, c ,  is the far-field 
surfactant concentration, cc,  is the bulk phase surfactant distribution, rmax is the 
maximum concentration in the surface phase, ITmax is the surface distribution of 
surfactant, and D the mass-diffusion coefficient. The pressures are given by p(,uU/R) 
and @(fiU/R).  The constants Ki ,  K-,  and Rp1 pertain to the kinetics of adsorption. 

We consider the situation Re, & + 0 and first examine the case Pe, &, Pe,* -00. 

The latter condition corresponds to either a low solubility of the surfactant or a large 
translational velocity of the drop. For moderate solubilities and large U the condition 
Re, R^e 0 is only satisfied for the case of very large kinematic viscosities. 

h A 
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With these limiting approximations we have, to leading order, the following 

(9) v p  = v2u, 

V$ = V2Q, (10) 

v .  (cu) = 0, (11) 

v .  ($a) = 0, (12) 

v,. (ru,) = 0. (13) 

description : 

The surface mass conservation condition (7) reduces to 

This condition also results for the non-equilibrium limit when a strong adsorption 
barrier is present. Such a situation corresponds to the case for which K , R / U ,  
K-, c ,  RIT,,, U ,  l?--l c, RIT,,, U + 0. By applying this limit we obtain 

[n.~('-g)] S = 0. 

In  this case, the bulk diffusion is much faster than the adsorption-desorption, which 
therefore controls the process. By substituting (14) into (7)  and neglecting surface 
diffusion (Pe? +a), we obtain (13). 

The integration of (13) in spherical coordinates leads to 

A 
sin 6' 

u,r=- 

where A is an integration constant. In  order to have bounded solutions a t  6 = 0 and 
6 = 7~ we must set A = 0. Therefore 

usr = 0, (16) 

us = 0 (17) 

or r = 0. (18) 

which implies that on any part of the interface we have either 

Hence we impose the interface condition that wherever the surfactant is present 
(r =t= 0) we have the no-slip condition 

us = 0 (0 < 6 < $), (19) 

r=o ( $ < e < n ) ,  (20) 

and on the regions where the interface is mobile (us $. 0 ) ,  we have 

which leads to the continuity condition that the shear stresses on each side of the 
interface are equal over the region # < 6 < 7 ~ .  

3. Solution 

stream functions, viz 
In order to solve this set of equations we introduce dimensionless axially symmetric 
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Here the radial coordinate is nondimensionalized with respect to the drop radius R. 
For creeping flow the stream functions obey the Stokes equations 

&(+) = 0, 

LZ,(+) = 0, 

where 

The boundary and interface conditions are as follows. 
(i) Uniform stream at 00 : 

(ii) Vanishing; radial velocity a t  the interface : 

= $r2 sin2 8. 

$Ir=1 = $Ir31 = 0 (0 < 8 < n). 
(iii) Vanishing tangential velocity along the stagnant cap : 

(iv) Continuity of the tangential velocity along the ‘clean ’ interface : 

(v) Continuity of the shear stress along the ‘clean’ interface: 

(vi) Finite velocity a t  the origin: 

Here ,LA and ,k are the exterior and the drop-interior viscosities respectively. 

(29) and (31) is 
The general solution of (23) and (24) satisfying the boundary conditions (26), (27), 

where 4 ( x )  is the Legendre polynomial. 
An attempt to satisfy (28) and (30) yields the following set of dual series equations: 

C,* J:,,, Pk(x) d z  = e(s) dz (0 G 8 < $), (34) 
k=l  

The integrals of the Legendre polynomials may expressed as 

Pk(x) dx = sin 8 T,’(cos 8) ,  l o s o  
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where TP(cos  8 )  denotes the associated Legendre functions. With this notation. and 
by defining 

we find that the set of dual series equations (34), (35) takes the form 

m 

(39) 

(40) 

An exact solution to this set of dual series equations is found by using the method 
introduced by Collins (1961). We first find an expression for 

m 

h(8) = C Ch(2k+ 1) T,'(COS 8) (0 < 8 < 9). (41) 
k-1 

Upon following Collins (1961), we find this to be given by 

d H(6)  sin Ed[ 
d8 s ( cos~-cos<)~ '  

h(8) = - 2  cosec 8 tan $8 - 

where sin 8 tan +8[-,~/4(,5+;) sin 81 d8 
(cos 8 - cos [ ) t  (43) 

After some manipulation of (42) and (43), h(8) is found to be 

(cos 8 - cos #)+ 
( cos 8 - cos #)& (1 + cos #).I + + 

1 +cos 8 

Upon the application of the orthogonality principle for the set 

(T,l(cos O), k = 1,2,3 ,...) 

in the Legendre series 

h(8) (0 < 8 < #) 
0 (#<8<77) 

00 

Ck(2k+ 1) T,'(cos 8) = 
k-1 

we find 

Ck = c,* = lU {sin (k+2)#-sin k#+sin (k+l)$-sin ( k - l ) #  
477(P+/4 

(44) 

(45) 

The complete solution is given by equations (32)-(33) with C,* given by (46)-(48). 
A discussion of several pieces of useful information that can be obtained from this 
solution is presented in 54. 
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FIGURE 2. The drag force as a function of the cap angle r$ for various values 
of the viscosities ratio k/p.  

4. Results and discussion 
4.1. The drag force 

An expression for the drag force is of fundamental interest in the type of flow being 
examined. For axisymmetric creeping flows, the drag force is given by Payne & Pel1 
(1960) as 

I++ -+r2 sin2 0 
F = - 8npUR r+oo lim rsin20 ’ (49)  

where R is the drop radius. For the present case the following closed-form expression 
€or the drag is found: 

[2$+sin $-sin 2$-f  sin 3$]+- 2p+3’]. (50) 2p + 2p 
F($) = 4npUR 

This result for the drag is plotted in figure 2 as a function of the cap angle $ for various 
values of the viscosity ratio I;/p. 

For the limiting case of $ = 0 (no surfactant), we recover the Hadamard- 
Rybczynski result 

2p + 36 
F(0) = 4npUIi ~ 

2p -k 2p’ 

For the case # = 7r (completely stagnant interface), we obtain the solid-sphere result 

F ( n )  = 6npUR. ( 5 2 )  

In  the limit of the drop viscosity becoming infinitely large (,C + a), the solid-sphere 
drag is also obtained. The drag force for the special case of a bubble is easily obtained 
from (50) by letting ,& --f 0. This yields 

F($)bubble = 4np UR [25h + sin $ - sin 2$ - f sin 3$] + 1 (53) 
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- present theory (exact )  

2 -  

0 :* 
Cap angle @ 

FIGURE 3. The reciprocal of the capillary number as a function of the cap angle $, 

A Taylor-series expansion of (50) for small #J leads to Harper’s (1982) result 

The recovery of this result from the present generalization indeed provides mutual 
confirmation about the accuracy. 

4.2. The interfacial tension 

The usefulness of the present result can be considerably enhanced by relating it to 
as many physically measurable quantities as possible. The difference between the 
maximum and the minimum interfacial tensions is one measurable quantity. It is 
possible to relate this difference to  the cap angle. Since the jump in the interfacial 
shear stress is proportional to the interfacial tension gradient, we have 

where u(0) is the interfacial tension and rro and .ire are the appropriate shear stresses. 
Upon the substitution of (32), (33) into (55),  and with the use of (41), we find that 

where h(0) is given by (42)-(44). 
Davis & Acrivos (1966) integrated (55) for bubbles (fro = 0 )  and obtained a 

numerical relationship between (vmax - urnin) and 6. The integration of (56) for the 
present case yields the following closed-form result : 



Stokes $ow past bubbles and drop". Part 1 

- present theory (exact) 

--- Davis & Acrivos ( 1  966) 

3 
P 
k 
04 + -  
2 

-r 

I 
0 I 2 

Ca-' = (amax fJmin)/PU 

FIGURE 4. The drag force as a function of Ca-1. 

1 
Ca-l =-[3$+3sin$-$(l+cos$)]:  

n 

where we define the capillary number Ca as 
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The expression (57) for Cap' is plotted in figure 3 along with the 150-term 
approximation of Davis & Acrivos (1966). I n  figure 4 the drag coefficient for bubbles 
is plotted as a function of Ca-l. I n  each case the agreement is fairly good. 

4.3. The amount of surfactant adsorbed 

The possibility of obtaining an expression for the total amount of surfactant at the 
bubble surface was suggested by Dussan V. (personal communication). An examin- 
ation of the problem led to  some useful results. By following Gibbs (1878) and treating 
the interface as a discontinuity, the thermodynamic equilibrium a t  the interface and 
the adjacent liquid is described by 

where 
is the gas constant. For a constant activity-coefficient we have 

is the dimensional surface concentration, p is the chemical potential and 9 

BT ap = -ar. r 
d u  _ -  As a result we obtain dr - -BT> 

or 
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Clearly 

Cap angle @ 

FIGIJRE 5. The amount of surfactant as a function o f  the cap angle $. 

In  order to calculate the total amount of surfactant a t  the interface, we need to 
evaluate 

S = 27rR2 1; T(8) sin 8 d8. (64) 

After using (56) and (62) in (64) we obtain 

Upon integrating by parts we find that 

s(+) = [2+-4+ cos +-sin 2++4 sin $1. (66) 

A plot of this result is given in figure 5. We notice that for small cap angles the amount 
of surfactant is indeed small. A steep increase is noticed for cap angles between q5 = Q7r 

and + = in. 
4.4. The internal vortex 

The stream functions given by (32), (33) were numerically evaluated and the 
streamlines located. An interesting flow pattern is exhibited within the drop, as shown 
in figure 6. With increasing cap angle we find that the centre of the vortex shifts 
towards the front of the drop. This vortex-shifting was observed experimentally by 
Huang & Kintner (1969). Our theory, however, underpredicts the shift in the position 
of the centre of the vortex. Harper (1982) also theoretically estimated the shift in 
the vortex and found disagreement with the Huang-Kintner measurement. It was 
originally felt that the disagreement was probably due to the limitation of Harper’s 
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FIGURE 6. Streamlines for (a) q5 = in and (b) 4 = in, with //,u = 4. The no-slip 
interface is indicated by a heavy line. 

(1982) result to small cap angles. This suspicion may now be ruled out because the 
present theory, which is valid for all cap angles, still disagrees with the experiment. 
With this issue resolved the disagreement may now be attributed to  the fact that 
the theory assumes that a part of the interface is completely surfactant-free. This 
was probably not the case in the Huang-Kintner experiment. A model accounting 
for this effect needs to be examined. 

An interesting feature of the predicted vortex flow pattern is that it is independent 
of the drop viscosity. Only the strength of the vortex is governed by the viscosities 
of the drop and the surrounding fluid. This behaviour is quite obvious when we 
examine the development from (32)-(40). From this result an important deduction 
may be made about the ‘degree of circulation’. The concept was proposed by Davies 
(1963), but a precise definition was given by Clift, Grace & Weber (1978) in the 
following form 

Here the ‘degree of circulation’ is denoted by Z ,  UT is the terminal velocity of the 
drop/bubble and UTs is the Stokes terminal velocity for a solid sphere. Griffith (1962) 
guessed an expression for 2 on the basis of Savic’s (1953) approximation. In Clift’s 
notation, this expression is 9 

where Y denotes the surface-contamination effects. 
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The present exact solution yields the following expression for Z 

where m($) is the contamination term given by 

(70) 
1 

271 
m(9) = - [24+sin $-sin 29-9 sin 391. 

For small cap angles, m(q5) is also small, and we may write, to leading order, 

z- 

This does not correspond to Griffith’s (1962) leading-order approximation, in which 
the surface contamination effects and the viscous effects are separated. 

It is quite clear that with the definition of Z given by Clift et al. (1978) we cannot 
separate the surface and viscous effects, even in the leading order. However, an 
examination of the drag force given by (50) shows that if we define the degree of 
circulation Z* as 

172) &$) = FStokes ( 1  -@*L 
or equivalently u,, = u, ( 1  +*), (73) 

then we obtain 
(74) 

Here we can clearly separate the viscous effects from the surface effects, even for the 
exact case. It is therefore more convenient to define the degree of circulation in the 
form given by either (72) or (73). 

5. Conclusion 
The boundary conditions appropriate to drops in the presence of surfactants are 

formally derived in the limit of high PBclet numbers. A number of useful results are 
obtained from the solution, particularly the closed-form expressions for the drag 
force, the capillary number and the amount of surfactant adsorbed on the bubble 
surface. Since the drop viscosity is taken to be completely arbitrary, most of the 
results apply to both bubbles and drops. 

The 150-term solution of Davis & Acrivos (1966) shows reasonable agreement with 
the present exact results for the drag force and for (umax-umin)/pU. Also, Harper’s 
(1 982) asymptotic solution is in perfect agreement with the leading-order expansion 
of the present solution. 

As mentioned earlier, the present solution is to be used as a leading-order term for 
the case when the thin film is a continuum having a weak internal circulation. A full 
development will be presented in Part 2 of this series of investigations. The case of 
thin liquid films on solid spheres was given by Johnson (1981). The situation when 
the coating is no longer thin is also under examination. In  subsequent parts of this 
series we will be examining the heat-transfer and phase-change processes for 
application to direct-contact heat-transfer operations. 

This work was partially supported by the National Science Foundation (MEA 
81-07564). 
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